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ABSTRACT

Graph Neural Networks (GNNs) have achieved state-of-the-art results on a vari-
ety of graph learning tasks, however, it has been demonstrated that they are vul-
nerable to adversarial attacks, raising serious security concerns. A lot of studies
have been developed to train GNNs in a noisy environment and increase their
robustness against adversarial attacks. However, existing methods have not un-
covered a principled difficulty: the convoluted mixture distribution between clean
and attacked data samples, which leads to sub-optimal model design and limits
their frameworks’ robustness. In this work, we first begin by identifying the root
cause of mixture distribution, then, for tackling it, we propose a novel method
GAME - Graph Adversarial Mixture of Experts to enlarge the model capacity and
enrich the representation diversity of adversarial samples, from three perspectives
of model, training, and optimization. Specifically, we first propose a plug-and-
play GAME layer that can be easily incorporated into any GNNs and enhance their
adversarial learning capabilities. Second, we design a decoupling-based graph ad-
versarial training in which the component of the model used to generate adver-
sarial graphs is separated from the component used to update weights. Third, we
introduce a graph diversity regularization that enables the model to learn diverse
representation and further improves model performance. Extensive experiments
demonstrate the effectiveness and advantages of GAME over the state-of-the-art
adversarial training methods across various datasets given different attacks.

1 INTRODUCTION

Graph neural networks (GNNs) have been demonstrated to be effective at learning from graphs.
They explore a message-passing mechanism to update node representations by iteratively aggregat-
ing information from their neighbors, allowing GNNs to achieve state-of-the-art performance (Kipf
& Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017). Many real-world applications are
based on GNNs, such as modeling over social networks (McAuley et al., 2015; Hu et al., 2020) and
biological molecules (Jin et al., 2018; Xu et al., 2019).

Nevertheless, despite their outstanding performance, GNNs are susceptible to adversarial at-
tacks (Zügner & Günnemann, 2019; Zheng et al., 2021), which necessitate techniques to leverage
GNN’s robustness against adversarial perturbations. Attackers can downgrade the performance of
GNNs from multiple perspectives, such as adding or removing edges (Geisler et al., 2021), per-
turbing node properties (Zügner & Günnemann, 2019; Sun et al., 2020), and injecting malicious
nodes (Zou et al., 2021). To enhance GNN’s robustness, multiple defense methods against graph
attacks have been proposed (Jin et al., 2020; Entezari et al., 2020; Zhang & Zitnik, 2020). However,
most existing methods have not uncovered the principled difficulty (i.e., the convoluted mixture
distribution between clean and attacked data samples), which results in sub-optimal model design,
poor robustness, and limited performance. In light of this, we study the robustness of GNNs from
a more fundamental perspective by discovering the key pattern behind the adversarial attacks that
jeopardizes the performance of GNNs.

We begin by comparing the statistical divergence between the latent representations of nodes on
the clean graph and the adversarially generated graph, as shown in Figure 1. We observe that the
distributions of node representations for clean and adversarial graphs before the message passing
are highly similar (i.e., Figure 1(a)). However, as the model gets deeper, these two distributions get
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Figure 1: The distributions of node representations generated by two GNNs trained over clean and
adversarial graphs. In (a), these two distributions are extremely similar. In (b) and (c), as the model
gets deeper, a progressively larger divergence between the two distributions is observed.

increasingly distinct, as demonstrated by the progressively larger shift shown from Figure 1 (a) to
(c). This demonstrates that adversarial attacks imperil GNN’s performance by generating adversarial
graphs belonging to a distribution different from the clean graph, and the GNN model fails to transfer
the knowledge learned from the clean graph to the generated adversarial graph.

To address the above challenge, we propose Graph Adversarial Mixture of Experts (GAME), a
novel framework that enhances the robustness for GNN by expanding the model capacity and in-
creasing the representation diversity for adversarial graphs. Specifically, we design GAME from
three perspectives: (i) To strengthen the model capacity, we propose a plug-and-play GAME layer to
accommodate the adversarial graphs with diverse mixture distributions by dynamically routing mul-
tiple assembled expert networks. (ii) From the training perspective, we present a decoupling graph
adversarial training strategy, namely DECOG, where each expert network is trained by adversarial
graphs generated by maximizing the gradient of other experts. DECOG enforces each expert to learn
distinct distributions that all other experts under-perform at. (iii) From the optimization perspective,
we incorporate a graph diversity regularization (GRADIV) to further enhance the diversity of knowl-
edge learned via all expert networks such that GAME is capable of handling various adversarial
graphs. GAME is an all-round robust framework that not only improves GNN’s resilience to ad-
versarial attacks, but also without too much extra cost compared with normal GNN, since GAME
dynamically activates only one subset of the experts to participate in the computation. The contri-
butions of this paper can be summarized as follows:

• To the best of our knowledge, this is the first work to improve GNN’s robustness from the perspec-
tive of distribution divergence. According to our empirical studies, existing GNNs fail to transfer
the knowledge learned from one clean graph’s distribution to another generated adversarial coun-
terpart, which results in vulnerabilities to adversarial attacks.

• To solve this challenge, we propose an all-round framework, namely Graph Adversarial Mixture
of Experts (GAME), from the perspectives of model design (i.e., GAME layer to bolster the
model capacity), training (i.e., DECOG to diversify the adversarial graphs), and optimization (i.e.,
GRADIV to further diversify the experts’ knowledge).

• Comprehensive experiments are performed on multiple benchmark datasets across varying scales,
demonstrating that the robustness contributed to our proposed all-around GAME. The suggested
method beats other common baselines in a variety of attack evaluations and natural evaluations,
demonstrating that the all-around robust design of GAME handles intricate mixture distribution
well and cleverly addresses a fundamental difficulty in graph adversarial training.

2 RELATED WORK

Graph Neural Networks. Graph Neural Networks have recently attracted a great deal of interest
due to their effectiveness in learning non-Euclidean data and their remarkable performance in a vast
array of graph mining tasks (Hamilton et al., 2017; Battaglia et al., 2018; Wu et al., 2020). Graph
convolutional network (GCN) is proposed in the early stage of GNN research to apply the concept
of convolution from image to graph data (Kipf & Welling, 2017; Gao et al., 2018; Wu et al., 2019).
Instead of simply averaging the features of neighboring nodes, graph attention networks (Veličković
et al., 2018; Wang et al., 2019) use the attention module to value each neighboring node and learn
more important nodes during message passing. In addition, graph recurrent neural networks (Ruiz
et al., 2020) adopts the gating design on information propagation among graph structure inspired by
recurrent neural networks in order to overcome the limitations of GNN regarding its message passing
over long distances on large graphs. Simultaneously, skip connection is introduced to construct
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deeper GNNs and learn comprehensive representations in order to overcome the over-smoothing
phenomenon (Li et al., 2019; 2021a;b). Unlike prior works focusing on improving model’s standard
accuracy, to the best of our knowledge, our GAME is the first attempt to improve the robustness of
adversarial graphs by introducing the Mixture of Experts mechanism to strengthen GNN capacity.

Adversarial Learning on Graphs. It is demonstrated that deep learning models are susceptible
to inputs with small adversarial perturbations, and several methods are proposed to improve the
model’s robustness (Goodfellow et al., 2015; Kurakin et al., 2017; Xie & Yuille, 2020). Recent re-
search has shown that GNNs are susceptible to adversarial attacks without exception (Zheng et al.,
2021), highlighting the urgent need to improve their robustness. Several methods are proposed for
attacking graph data, including inserting or removing connections (Du et al., 2017; Chen et al., 2018;
Waniek et al., 2018), perturbing node features (Zügner et al., 2018; Zügner & Günnemann, 2019;
Sun et al., 2020), or adding virtual nodes (Wang et al., 2020; Zou et al., 2021). In the meantime, nu-
merous defense methods against graph attacks have been developed for learning robust GNNs (Zhu
et al., 2019; Feng et al., 2020; Jin et al., 2020) or removing the attacked input during preprocess-
ing (Entezari et al., 2020; Zhang & Zitnik, 2020). Go beyond prior works, this paper addresses a
fundamental issue in graph adversarial learning (i.e., overly complex mixture distributions between
clean and attacked nodes), subsequently improving the model capacity and representation diversity.

3 PRELIMINARIES

Mixture of Experts. In deep learning, the Mixture of Experts (MoE) constructs big neural networks
with a dynamic routing strategy, which facilitates superior model capacity and attains better data
parallelism (Shazeer et al., 2017). Given the input x ∈ Rd, the current expert layer E = {Ei(·)}ni=1

with n experts, and the gating network P (·) = {pi(·)}ni=1, the output of MoE module can be
formulated as follows:

y =
∑
i∈T

pi(x)Ei(x), (1)

where T represents the set of activated top-k expert indices. In the above equation, the gating
module P (x) makes the activated portion of the model the same size as the normal network, hence
enabling the efficient training of a larger neural network. Specifically, we calculate the gate-value
pi(x) for i-th expert as follows:

pi(x) =
exp(h(x)i)∑N
j=0 exp(h(x)j)

, (2)

where h(x) is a linear transformation to compute the logits of experts given input x, and h(x)i
reflects the i-th value of the obtained logits, which weights the i-th expert in current layer.

Adversarial Training. Given the data distribution D over inputs x ∈ Rd and their labels y ∈ Rc, a
standard classifier (e.g., a neural network) f : Rd → Rc with parameter θ maps an input to labels
for classification, utilizing empirical risk minimization:

min
θ

E(x,y)∼D L(f(x; θ), y), (3)

where L(·, ·) represents the cross-entropy loss. Numerous strategies have been proposed to improve
neural network adversarial robustness, with adversarial training-based methods being the most effec-
tive. The majority of cutting-edge adversarial training algorithms optimize a hybrid loss consisting
of a standard classification loss and an adversarial loss term:

Lcls = L(f(x; θ), y), Ladv = max
δ∈B(ϵ)

L(f(x+ δ; θ), y), (4)

where Lcls denotes the classification loss over standard (or clean) inputs, while Ladv is is the loss
that encourages the model to learn from adversarial data samples, and B(ϵ) = {δ | ∥δ∥∞ ≤ ϵ} is the
perturbation set. Popular adversarial training methods such as PGD (Madry et al., 2018) employs
the same Lcls as in Equation 4, but substitute Ladv with a soft logits-pairing term. Thus, the overall
goal of adversarial training is to minimize the following objective:

min
θ

E(x,y)∼D [(1− λ)Lcls + λLadv], (5)

where λ is a fixed weight hyper-parameter. To balance standard and robust accuracies, the hyperpa-
rameter λ must be set to a constant value during training for all of these contemporary adversarial
learning works.
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Figure 2: The illustration of the GAME framework: In (1) GAME layer, partial experts (in blue
shaded region) are activated to compute adversarial gradient just for adversarial graph construction
without weight updates (left part). Then, (2) DECOG decouples expert weights used for adversarial
graph generation and model update, where the gate module reactivates other partial experts to fit
created adversarial graphs in each GAME layer (right part). Finally, (3) GRADIV regularizes multi-
ple experts to learn knowledge with more diversity. Note that in the left part, the model maximizes
adversarial loss to obtain the adversarial gradient only for graph perturbations. Next, in the right
part, the model minimizes overall loss on previously generated adversarial graph for weight updates.

4 METHODOLOGY

In this section, motivated by the prior analysis of adversarial mixture distribution in Section 1, we
present a novel framework GAME to increase the adversarial robustness of GNNs. Figure 2 illus-
trates the overall framework of the proposed model. Specifically, first, our model is developed using
GAME layers, which increases model capacity on adversarial mixture distribution by introducing the
MoE mechanism. Second, based on the GAME layer, we design a novel DECOG training strategy
that augments more varied graphs to facilitate GNNs’ adversarial training. Third, in order to classify
adversarial samples from mixture distribution, we suggest graph diversity regularization for learning
more distinguishable representations. The details of different parts are described in the following.

4.1 EXPANDING MODEL CAPACITY: GAME LAYER

To improve the learning capacity of GNNs and account for the overly complex mixture distribution,
each GNN layer in our model includes a GAME layer at the model level. To update the feature
of a target node, our model employs GAME layer to transform and aggregate the features of the
neighboring nodes. Subsequently, the GAME combines the feature of target node and neighboring
nodes to formulate node representation in the graph:

h(l)
v = COMB(l)

(
GAME(l)(h(l−1)

v ),AGGR
({

GAME(l)(h(l−1)
u ),∀u ∈ Nv

}))
, (6)

where h
(l)
v denotes representation of node v at l-th layer; AGGR(·) and COMB(·) represent the

neighbor aggregation and combination functions, respectively. In Equation 6, the GAME layer are
constructed by W = {Wi(·)}ni=1 and P (·), which represent the set of n expert networks and the
gate module, respectively. Then, the GAME layer is formulated as follows:

GAME(h) =
∑
i∈T

pi(h)Wi(h), (7)

where T represents the set of activated top-k experts in each GAME layer. In comparison to conven-
tional GNNs, the proposed sparse GAME layer is able to build a wider model with low computational
cost, resulting in a greater capacity to express mixed distributions, as shown in Figure 2 (1).

4.2 BOOSTING ADVERSARIAL GRAPHS: DECOG

For boosting the diversity of attacked node attributes and attacked adjacency matrices, we present
Decoupling-based Graph Adversarial Training Strategy (DECOG). DECOG aims to deliver more
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robust performance than traditional graph adversarial training by transferring adversarial features
from all experts to each individual expert. Specifically, given a clean graph G and the node labels
y with data distribution D, we first calculate the loss function over both clean graph G and attacked
graph G∗ between input G’s target nodes and their ground truth label y. Then, we learn a robust
GAME model fθ with parameters θ:

min
θ

E(G,y)∼D (1− λ)Lclean
ce (fθ(G), y) + λLadv

ce (fθ(G∗), y), (8)

where Lclean
ce (·, ·), Ladv

ce (·, ·) indicate the losses (e.g., cross-entropy for node classification) on clean
graph and attacked graph, respectively, and λ regulates the weight of the adversarial loss. The adver-
sarial graph G∗ is generated by GAME’s customized PGD attack: during the learning procedure of
PGD, GAME activates partial experts to compute multiple iterations of adversarial gradients. When
the computation is finished, the gradients are added to the original graph as the final adversarial input
for GNNs to minimize the adversarial learning loss. Therefore, each expert acquires the adversarial
features generated by others. From a high-level vantage point, DECOG enables our GAME layer to
implicitly transfer the aggregated knowledge of all experts to each individual expert.

To formally describe the aforementioned pipeline, given the initial clean graph as G(0), we first ex-
tract the initial adjacency matrix A(0) and node features X(0) from G(0). Then, we dynamically sam-
ple the index set of activated experts T 0 using {A(0), X(0)} to determine the GAME model’s current
activated part fθ′(0)|T 0

(·), where θ′(0)|T 0 is a subset of the GAME model fθ with parameters θ at the
current iteration. To maximize Lce, fθ′(0)|T 0

(·) utilizes {A(0), X(0)} as input. The gradients com-
puted for A(0) and X(0) are represented as ∇A(0)Lce(fθ′(0)(G(0)) and ∇X(0)Lce(fθ′(0)(G(0)), y),
respectively. Both types of gradients are considered as adversarial noises, which are later incorpo-
rated to the current input {A(0), X(0)} to derive the perturbed adjacency matrix and node features
{A(1), X(1)}. The procedure can be formulated as:

A(t+1) = ΠB(A,ϵ)(A
(t) + α · sign(∇A(t)Lce(fθ′(t)(G(t)), y))),

X(t+1) = ΠB(X,ϵ)(X
(t) + α · sign(∇X(t)Lce(fθ′(t)(G(t)), y))),

(9)

where B(A, ϵ) is the ℓ0 ball with radius around clean A, B(X, ϵ) is the ℓ∞ ball with radius around
clean X , ΠB(A,ϵ) means the nearest projection to B(A, ϵ), ΠB(X,ϵ) means the nearest projection to
B(X, ϵ), and α is the step size. With the aim of acquiring the adversarial graph G∗ = {A(∗), X(∗)},
we calculate the gradients T times as in Equation 9 and treat the final gradient as the perturbation.
Later, the adversarial graph G∗ is utilized to train a different subset of activated GAME experts.
In general, DECOG enables the dynamic activation of each expert in GAME and facilitates the
computation of more diverse attacked graph adjacency matrix and node features, as depicted in
Figure 2 (2).

4.3 ENHANCING CLASSIFIABILITY IN ROBUST REPRESENTATION: GRADIV

For empowering GAME in learning more distinguishable representation from the complex mixture
distribution, we design Graph Diversity Regularization (GRADIV) from the optimization level. This
regularization term penalizes the model to maximize the distance between node embeddings and
enforces the model to learn distinct representations. The regularization is formulated as:

RGRADIV = − log

N∑
i=1

N∑
j=1

exp(SIM(hi, hj)/τ)∑N
k=1 exp(SIM(hi, hk)/τ)

, k ̸= i, (10)

where SIM(·, ·) calculates the cosine similarity between two node representation, and N denotes the
number of nodes. RGRADIV increases the distance between any pairs of learned node embeddings,
which offers explicit supervision signal to learn node representations with more variety, and hence
improving the model learning capacity. Finally, the overall learning objective function LGAME is
defined as a weighted combination of Lclean

ce , Ladv
ce , and RGRADIV:

LGAME = Lclean
ce + Ladv

ce +RGRADIV. (11)

Consequently, LGAME enables GAME to learn distinguishable node embeddings and preserve robust-
ness to attacked node features, thereby improving the representation quality and downstream task
performance.
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5 EXPERIMENT

In this section, we perform comprehensive experiments on the graph robustness benchmarks to
demonstrate the effectiveness of our proposed GAME model against adversarial graphs with complex
distributions. This section is guided by answers to the following five research questions: RQ-1: Can
GAME achieve better robustness compared to other SOTAs? RQ-2: How does each component in
our all-around framework contribute to the robustness improvement? RQ-3: Can GAME separate
the mixed distribution of clean and attacked nodes? RQ-4: Does GAME generate more diversified
training adversarial graphs compared to baselines? and RQ-5: Can GAME learn distinguishable
node representations?

5.1 EXPERIMENTAL SETUP

Datasets. We utilize Graph Robust Benchmark (Zheng et al., 2021) dataset to evaluate our model’s
performance by graphs with varying scales, including grb-cora (small-scale), grb-citeseer (small-
scale), grb-flickr (medium-scale), grb-reddit (large-scale), and grb-aminer (large-scale).

Baseline Methods. We compare GAME with various baseline methods, spanning multiple perspec-
tives. For models that specifically focus on robustness, we explore R-GCN (Zhu et al., 2019), GNN-
SVD (Entezari et al., 2020), and GNNGuard (Zhang & Zitnik, 2020). In addition, we incoporate
general GNN models (i.e., GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu
et al., 2019), APPNP (Gasteiger et al., 2019), TAGCN (Du et al., 2017), GraphSAGE (Hamilton
et al., 2017), SGCN (Wu et al., 2019)) with two generic defense approaches (i.e., layer normaliza-
tion (Ba et al., 2016) (LN) and adversarial training (AT) (Madry et al., 2018)).

Attacking Strategies. We explore five effective yet diverse graph attack methods to imperil the
victim GNNs: RND (Zheng et al., 2021), FGSM (Goodfellow et al., 2015; Zheng et al., 2021),
PGD (Madry et al., 2018), SPEIT (Zheng et al., 2021), TDGIA (Zou et al., 2021). These attack
methods have been proven to deliver scalable and transferable attacks (Zheng et al., 2021).

Details of attacking strategies and adversarial training are described in Appendix B.1 and B.2, re-
spectively. In addtion, we also include the statistics of datasets in Appendix C.

5.2 OVERALL PERFORMANCE ON GRAPH ROBUST BENCHMARK

To answer RQ-1, we conduct the experiments to evaluate the robustness and report the perfor-
mance in Figure 3 (We run 10 times for mean results/standard deviation and the train:val:test split is
0.6:0.1:0.3. Due to the page limitation, we include the full results Table 2 with all numerical values
in Appendix A). As shown in Figure 7, GAME comprehensively achieves better robust accuracy than
other baselines under five distinct attack assessments. For instance, on the small-scale grb-citeseer,
the average accuracy of GAME outperforms the second-place R-GCN+AT by 2.96%; on the medium-
scale grb-flickr, the average accuracy of our GAME outperforms the runner-up GAT+AT by 2.11%;
on the large-scale grb-aminer, GAME outperforms the second-best GAT+AT by 1.32%. These results
demonstrate the outstanding effectiveness of GAME against the distribution divergence across five
GRB graphs with different scales. Besides, under the w.o. attack setting, GAME significantly outper-
forms baselines by a large margin, proving that GAME equipped with multiple expert networks has
stronger learning capability as well as higher accuracy on clean graphs. Though more parametrized
than other baselines, GAME still enjoys the efficiency like regular GNNs and retains remarkable
robustness against adversarial attacks, thanks to our proposed dynamic routing strategy that only
activates partial experts to approximate the forward and backward of a normal GNN.

5.3 CONTRIBUTION OF INDIVIDUAL COMPONENT IN THE ALL-ROUND FRAMEWORK

GAME integrates three different components into a comprehensive graph robust learning framework,
and to answer RQ-2, we conduct experiments on the performance without one of the individual
components in GAME, denoted as (a) w/o GAME layer, (b) w/o DECOG, and (c) w/o GRADIV, as
shown in Table 1. We observe that the performance in both adversarial and clean graphs decreases
after removing each component, demonstrating the contribution of each design in increasing the
model’s performance. For (a) w/o GAME layer, removing GAME layer from our framework results
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Figure 3: Overall assessments of all framework across graph with different scales. We apply TDGIA,
SPEIT, RND, PGD-based, and FGSM-based graph attacks to evaluate the robustness of different
frameworks. w.o. attack refers to the performance on clean graphs. For better clarity, we only
include strong baselines in each figure.

in GAME being vanilla GCN on the model level. Such a removal disables the GRADIV training tech-
nique, as GRADIV depends on the GAME layer. Removing GAME layer decreases the performance
on clean graphs (under w.o. attack) more than that on adversarial graphs. Specifically, under wo
attack, this removal causes the model lose 2.58% accuracy, which is higher than the accuracy losses
under two representative attacks (0.98% of PGD-based and 0.98% of FDSM-based) on grb-citeseer,
respectively. For (b) w/o DECOG, disabling the DECOG training strategy results in the generated
adversarial graphs tightly coupled with the activated experts at the current iteration (i.e., the ac-
tivated experts for adversarial gradient computation are identical to those updated by minimizing
the loss). As a result, this removal causes a more severe performance deterioration for adversarial
graphs than it does for clean graphs. Specifically, under PGD-based and FDSM-based attacks, this
removal causes the model on grb-citeseer to lose 0.56% and 0.75% accuracy respectively, which
is comparable to the removal of GAME layer. However, the accuracy loss on wo attack is only
1.56%, which is significantly less than the accuracy loss caused by GAME layer. It demonstrates
that DECOG improves the performance of GNNs against adversarial attacks by generating diverse
yet effective adversarial graphs, which is also compatible with the subsequent additional studies in
Section 5.5. And for (c) w/o GRADIV, GAME without the use of RGRADIV in Equation 11 leads to
a scenario where actively diversifying node embeddings is no longer an explicit supervision signal
during the optimization process. As a result, this removal leads to performance downgrade on both
clean graph and adversarial graph (0.65% on clean grb-citeseer and 0.42% on FGSM-attacked grb-
citeseer, respectively), showing that the effectiveness of GRADIV in assisting GAME model to learn
distinguishable representations on both clean and adversarial graphs.

5.4 PERFORMANCE AGAINST DISTRIBUTION DIVERGENCE

We evaluate the performance of GAME and the vanilla GCN against the attacks from graphs gener-
ated through the adversarial distributions that are extremely divergent from the distribution of clean
graphs, as shown in Figure 4. To answer RQ-3, we visualize the distributions of node representa-
tions from GCN and GAME at three stages (i.e., input layer (left column) and after first and second
message passing layers (middle and right column respectively)). We observe that for the vanilla
GCN, the distribution shift between the node representations in the clean and adversarial graphs still

7



Under review as a conference paper at ICLR 2023

Table 1: Ablation studies for GAME on graphs with varying scales. Each row includes the model
variant (mean result ± standard deviation) without one of the components in our all-around design.

Methods TDGIA SPEIT RND PGD-based FGSM-based w.o. attack Avg. Acc.
gr

b-
ci

te
se

er GAME 75.80 ± 0.99 75.69 ± 1.24 76.96 ± 1.04 74.86 ± 0.73 74.85 ± 0.71 77.86 ± 0.22 76.00 ± 0.82
w/o GAME layer 73.96± 0.60 73.95± 0.34 74.21± 0.60 74.01± 0.52 73.89± 0.24 75.28± 0.09 74.22± 0.39
w/o DECOG 74.07± 0.18 73.98± 0.83 74.70± 0.11 74.30± 0.82 74.10± 0.33 76.30± 0.80 74.58± 0.51
w/o GRADIV 75.52± 0.28 75.50± 0.91 76.80± 0.51 74.42± 0.64 74.33± 0.46 77.21± 0.16 75.63± 0.49

gr
b-

fli
ck

r GAME 52.40 ± 1.02 50.54 ± 0.67 52.63 ± 0.87 52.62± 0.14 52.59 ± 1.20 53.83 ± 0.47 52.44 ± 0.73
w/o GAME layer 51.32± 0.75 47.43± 0.14 51.02± 0.42 50.44± 0.55 50.60± 1.15 52.31± 0.22 50.52± 0.53
w/o DECOG 51.63± 0.58 48.12± 0.45 51.52± 0.83 51.07± 0.83 49.95± 0.75 52.95± 0.89 50.87± 0.72
w/o GRADIV 52.27± 0.18 50.14± 0.19 52.33± 0.28 52.19± 0.52 52.10± 0.85 53.14± 0.99 52.03± 0.50

gr
b-

am
in

er GAME 68.21 ± 1.27 69.43 ± 1.02 69.03 ± 0.72 69.33 ± 0.62 69.21 ± 0.69 70.15 ± 0.95 69.22 ± 0.88
w/o GAME layer 67.89± 0.27 68.06± 0.30 67.95± 0.71 68.34± 0.29 68.20± 0.15 68.23± 0.40 68.11± 0.35
w/o DECOG 67.96± 0.63 68.45± 0.48 68.22± 0.35 68.70± 0.18 68.25± 0.22 69.26± 0.48 68.47± 0.39
w/o GRADIV 67.81± 0.78 69.32± 0.26 68.73± 0.39 69.12± 0.54 69.11± 0.41 69.66± 0.50 68.96± 0.48

G
CN

O
ur
s

(a) (b) (c)

Figure 4: The distributions of node representations on clean and adversarial graphs (upper: adver-
sarial trained GCN; lower: GAME model) at the input layer (left), after the first batch normalization
(BN) layer (middle), and after the last batch normalization (BN) layer (right). Each point indicates
the mean and variance of a single channel in the BN layer.

exists, even when the learning model forwards. In addition, the distribution difference between ad-
versarial graphs and clean graphs is small. This phenomenon demonstrates that vanilla GNNs such
as GCN suffer from mixture distributions between adversarial graphs and clean graphs, which pre-
vents GCN from learning distinguishable representations. Compared with the vanilla GCN, GAME
can successfully distinguish the node representations of the adversarial graphs from those of the
clean graphs. Besides, as node representations pass through deeper layers, GAME still maintains
the ability of discrimination, demonstrating GAME’s outstanding effectiveness against adversarial
graphs.

5.5 DIVERSITY OF ADVERSARIAL GRAPHS GENERATED BY GAME

(b) Ours(a) GCN
Figure 5: Distributions for clean and adversarial graphs created
by GAME (b) and an adversarially trained GCN (a). For fair com-
parisons, we explore the same setting for both models.

To answer RQ-4, we visualize
the distributions of both clean
and adversarial graphs gener-
ated by GAME and GCN in Fig-
ure 5. We observe that the ad-
versarial graphs generated from
GCN are similarly distributed
to the clean graph. On the
contrary, GAME generates ad-
versarial graphs whose distribu-
tion is statistically distinct from
that of the clean graphs, further

8
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GCN (standard) Ours (standard) GCN (adversarial) Ours (adversarial)

Figure 7: The loss landscapes of GAME and a vanilla GCN over clean graphs (the 1st and 2nd
figures) and adversarial graphs (the 3rd and 4th figures). Under both settings, we visualize the same
set of nodes randomly selected from the test set of the grb-cora dataset.

demonstrating the effectiveness of DECOG and GRADIV. Diverse experts enable GAME to learn
distinguishable node representations for robust performance, which significantly mitigates the
GNN’s training difficulties on the graphs with distinct distributions.

5.6 DIVERSITY OF NODE REPRESENTATIONS BY GAME

(b) Ours(a) GCN

Figure 6: t-SNE (Van der Maaten & Hinton, 2008) for the
representations of nodes in the test set in grb-cora. Nodes are
colored according to their class labels.

To answer RQ-5, on grb-cora
dataset, we visualize the node
representations generated by
GAME and a vanilla GCN, shown
in Figure 6. We observe that the
node representations generated
by GCN are generally entangled
and intertwined with each other,
while those generated by GAME
exhibit a very well-clustered
representation space with clear
inter-cluster difference. This
phenomenon demonstrates that
GAME can distinguish the com-
plex distributions and further
learn distinguishable node representations, thanks to the all-around design of GAME.

5.7 ANALYSES ON OPTIMIZATION LANDSCAPE

To further validate the robustness of GAME, we analyze whether our all-round framework GAME
reduces the difficulty of learning adversarial graphs by plotting its loss landscape (Li et al., 2018)
w.r.t. both input and weight spaces. According to Figure 7, we observe that GAME leads to a
flatter minima optimization landscape than the adversarially trained GCN on both clean graphs and
adversarial graphs, indicating that the method advantageously alleviates the learning difficulty on
the adversarial graph. our GAME reduces the complexity of learning adversarial graphs, allowing
adversarial training model weights to be as simple as in a standard environment rather than GCN.

6 CONCLUSION

In this paper, we first identify the fundamental issue in adversarial graph learning: the mixture dis-
tribution between clean and attacked data samples. Motivated by this problem, we propose Graph
Adversarial Mixture of Experts (GAME), a novel method to improve the model capacity, augment
adversarial graphs, and enrich the graph representation diversity. For acquiring these triple im-
provements, GAME contains three innovative components, including a plug-and-play GAME layer,
a decoupling graph adversarial training strategy DECOG, and a graph diversity regularization strat-
egy GRADIV. GAME outperforms other baselines when evaluated on several datasets given different
attack methods. Additional experimental analyses prove the effectiveness of GAME in handling the
complex mixture distribution, generating distinct adversarial graphs, and learning distinguishable
representations.

9
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ETHICS STATEMENT

GAME enhances the robustness of GNN models against adversarial attacks, and hence we believe
that no ethical issue can be entailed by our approach. In general, we should be very careful when
applying machine learning models to guarantee that no negative societal impact is cast.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we include the anonymous ink of the source code
in Appendix B.2. In addition, the hyper-parameters and other factors to reproduce our method are
also provided in the Appendix B.2.
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A FULL RESULTS OF PERFORMANCE COMPARISON

We conduct extensive experiments on all five datasets in Table 2. Here we display the results of
graph injection scenario with Top-5 attacks v.s. Top-10 defenses plus our GAME model. Since we
have chosen strong defense methods as baselines, it is generally hard for attacks to be all effectives.
The best performance is Bolded and the runner-up is underlined.

Table 2: Main results on Graph Robust Benchmark datasets (i.e., grb-cora, grb-citeseer, grb-flickr,
grb-reddit and grb-aminer). This table is a comprehensive supplementary to Figure 3. Partial results
are cited from GRB (Zheng et al., 2021).

Methods SPEIT TDGIA FGSM-based PGD-based RND w.o. attack Avg. Acc.

gr
b-

co
ra

GAME 86.10±0.81 86.42±0.61 86.53±0.72 87.68±0.62 87.04±0.58 88.00±0.73 86.96±0.68
R-GCN+AT 85.21±0.41 84.43±0.27 85.60±0.38 85.01±0.41 85.36±0.41 86.07±0.00 85.28±0.15
GAT+AT 85.35±0.19 84.55±0.50 85.43±0.34 85.33±0.72 84.95±0.58 85.57±0.00 85.20±0.21
SGCN+LN 75.65±0.87 77.39±1.05 81.90±0.90 81.53±1.27 82.85±1.29 85.20±0.00 80.75±0.41
R-GCN 79.85±0.48 74.58±1.76 76.77±0.74 76.62±0.90 79.53±0.74 84.83±0.00 78.69±0.27
TAGCN+LN 71.73±1.14 79.67±1.53 83.22±0.60 83.00±0.61 84.22±0.58 85.07±0.00 81.15±0.42
GIN+LN 64.75±0.62 76.14±1.80 78.58±0.51 78.26±0.88 76.75±0.89 77.24±0.00 75.29±0.49
APPNP+LN 73.11±0.76 68.16±2.10 66.49±0.68 67.09±1.18 68.93±0.92 82.84±0.00 71.10±0.40
GIN+AT 63.05±1.37 70.51±1.58 71.30±0.94 71.64±0.78 74.11±0.71 74.88±0.00 70.91±0.43
GATGuard 65.67±0.00 65.67±0.00 65.67±0.00 65.67±0.00 65.67±0.00 65.67±0.00 65.67±0.00
GCN+LN 59.45±0.64 72.58±2.71 78.21±0.68 77.60±1.14 81.34±0.60 83.58±0.00 75.46±0.49

gr
b-

ci
te

se
er

GAME 75.69±1.24 75.80±0.99 74.85±0.71 74.86±0.73 76.96±1.04 77.86±0.22 76.00±0.82
R-GCN+AT 71.30±0.64 71.75±0.78 73.63±0.50 73.58±0.36 72.95±0.68 75.03±0.00 73.04±0.17
GAT+AT 73.85±0.22 73.89±0.40 73.86±0.28 73.84±0.26 74.00±0.45 73.88±0.00 73.89±0.11
SGCN+LN 53.64±1.43 59.76±2.10 58.05±0.88 58.31±0.62 55.79±0.95 75.44±0.00 60.16±0.55
R-GCN 59.32±3.65 56.69±1.77 55.07±1.43 54.90±1.58 60.43±0.71 73.16±0.09 59.93±0.57
TAGCN+LN 51.09±6.38 46.87±4.99 63.39±1.21 64.25±1.48 73.06±0.58 73.56±0.00 62.04±1.70
GIN+LN 52.82±0.93 52.16±2.47 61.36±1.03 61.60±0.95 65.66±0.43 66.04±0.00 59.94±0.63
SAGE+AT 71.62±1.39 72.25±0.62 72.40±0.60 72.38±0.54 72.70±0.47 73.35±0.00 72.45±0.17
GIN+AT 44.71±9.62 59.01±5.47 62.54±0.81 63.21±1.19 65.24±0.51 67.82±0.00 60.42±1.30
GATGuard 67.08±0.00 67.08±0.00 67.08±0.00 67.08±0.00 67.08±0.00 67.08±0.00 67.08±0.00
GCNGuard 64.54±0.13 64.58±0.00 64.56±0.04 64.46±0.16 64.55±0.16 64.58±0.00 64.54±0.04

gr
b-

fli
ck

r

GAME 50.54±0.67 52.40±1.02 52.59±1.20 52.62±0.14 52.63±0.87 53.83±0.47 52.44±0.73
R-GCN+AT 47.14±0.13 48.97±0.05 50.22±0.11 50.20±0.08 49.32±0.10 52.28±0.06 49.69±0.04
GAT+LN 46.39±0.13 51.25±0.07 50.62±0.12 50.47±0.15 51.09±0.08 51.66±0.00 50.25±0.03
SAGE+LN 47.62±0.04 47.13±0.07 47.56±0.07 47.58±0.08 47.47±0.07 47.47±0.00 47.47±0.03
SAGE+AT 48.17±0.14 49.52±0.05 43.09±0.15 43.10±0.14 49.18±0.07 50.52±0.00 47.26±0.04
GCN+AT 43.52±0.07 47.54±0.06 48.58±0.09 48.58±0.09 51.00±0.09 51.53±0.00 48.46±0.02
GIN+LN 46.18±0.09 49.05±0.05 46.94±0.10 46.94±0.07 48.58±0.06 48.31±0.00 47.67±0.03
SAGE 43.66±0.07 50.63±0.08 43.32±0.14 43.33±0.19 49.00±0.08 50.79±0.00 46.79±0.06
GIN+AT 43.73±0.05 43.77±0.01 45.24±0.10 45.28±0.10 44.36±0.03 45.23±0.00 44.60±0.03
GAT 49.91±0.17 52.46±0.09 42.90±0.24 42.78±0.27 50.84±0.20 50.12±0.00 48.17±0.09
APPNP+LN 42.30±0.01 42.30±0.00 44.14±0.07 44.16±0.09 42.31±0.01 44.23±0.00 43.24±0.01

gr
b-

re
dd

it

GAME 96.45±0.20 96.03±0.45 96.22±0.28 96.69±0.38 95.73±0.37 96.78±0.32 96.31±0.01
GIN+LN 96.31±0.02 95.92±0.01 96.48±0.02 96.48±0.01 96.60±0.01 96.68±0.00 96.41±0.33
TAGCN+LN 96.31±0.02 95.89±0.01 95.91±0.01 95.90±0.01 96.30±0.02 96.37±0.00 96.11±0.01
TAGCN+AT 95.77±0.02 93.12±0.01 96.74±0.01 96.74±0.01 96.54±0.01 96.77±0.00 95.14±0.01
GAT+LN 93.76±0.02 93.73±0.01 93.91±0.02 93.91±0.01 93.84±0.02 94.15±0.00 93.88±0.01
R-GCN+AT 93.59±0.01 93.08±0.01 93.56±0.01 93.57±0.01 93.23±0.02 93.78±0.00 93.47±0.01
TAGCN 93.76±0.03 91.77±0.01 95.24±0.03 95.24±0.02 94.88±0.03 95.39±0.00 94.38±0.01
GCN+LN 95.57±0.01 91.09±0.02 95.23±0.02 95.22±0.01 95.63±0.01 95.68±0.00 94.74±0.01
SAGE+AT 90.21±0.02 90.16±0.01 90.54±0.02 90.54±0.02 90.37±0.03 90.48±0.00 90.38±0.01
SAGE 92.96±0.04 85.98±0.03 93.75±0.02 93.78±0.03 94.59±0.02 95.16±0.00 92.70±0.01
SGCN+LN 87.02±0.03 86.61±0.01 88.99±0.03 89.01±0.03 87.72±0.03 90.15±0.00 88.25±0.01

gr
b-

am
in

er

GAME 69.43±1.02 68.21±1.27 69.21±0.69 69.33±0.62 69.03±0.72 70.15±0.95 69.22±0.88
GAT+AT 68.04±0.03 67.69±0.03 68.01±0.02 68.00±0.02 67.72±0.04 67.93±0.00 67.90±0.01
R-GCN+AT 64.05±0.04 63.62±0.32 65.41±0.01 65.41±0.02 64.98±0.02 65.76±0.00 64.87±0.05
SGCN+LN 64.84±0.04 62.20±0.15 65.54±0.03 65.54±0.04 65.31±0.04 66.68±0.00 65.02±0.03
R-GCN 64.06±0.04 61.99±0.22 65.05±0.03 65.05±0.04 64.45±0.04 65.85±0.00 64.41±0.04
GCN+LN 65.51±0.02 60.38±1.46 66.22±0.02 66.22±0.02 66.17±0.02 66.20±0.00 65.12±0.25
GAT+LN 64.02±0.04 59.69±1.57 66.49±0.04 66.50±0.06 67.54±0.04 68.47±0.00 65.45±0.26
GIN+LN 63.11±0.02 59.59±0.42 64.63±0.04 64.65±0.04 64.36±0.06 65.59±0.00 63.65±0.07
TAGCN+LN 62.59±0.04 59.06±1.75 64.82±0.04 64.82±0.03 64.33±0.03 64.91±0.00 63.42±0.29
TAGCN+AT 63.77±0.06 57.24±5.04 66.32±0.02 66.34±0.03 66.42±0.03 67.08±0.00 64.53±0.84
GAT+LN 63.58±0.06 56.63±6.75 66.14±0.04 66.15±0.06 66.23±0.04 68.02±0.00 64.46±1.13
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B IMPLEMENTATION DETAILS

B.1 REPRODUCIBILITY SETTINGS OF ATTACK METHODS

We evaluate all the methods using five most common graph attack methods provide by GRB bench-
mark (Zheng et al., 2021), including random, fast gradient sign method, projected gradient descent,
SPEIT, and topological defective graph injection attack. The details of these five attack methods are
as follows:

• RND (Random): a method that injects random noises generated by Gaussian distribution (Zügner
et al., 2018).

• FGSM (Fast Gradient Sign Method): a method that linearizes the loss function around the cur-
rent value of parameters to get an optimal max-norm constrained perturbation (Goodfellow et al.,
2015).

• PGD (Projected Gradient Descent): a first-order adversary method that generates strongest assault
using local first-order information about the network (Madry et al., 2018).

• SPEIT: a winning solution of KDD-CUP 2020 Graph Adversarial Attack & Defense competition,
which is a global black-box graph injection attack with adversarial adjacent matrix and feature
gradient attacks (Qinkai et al., 2020).

• TDGIA (Topological Defective Graph Injection Attack): a powerful graph injection attack that
injects malicious nodes progressively around topologically vulnerable nodes in the graph (Zou
et al., 2021).

Following the prior work (Zheng et al., 2021), using a vanilla GCN as the surrogate model brings
more transferable and better black-box attack effects than other GNN models. Therefore, we choose
GCN as the surrogate model for all attacks in our experiments.

B.2 HYPER PARAMETERS AND ADVERSARIAL TRAINING DETAILS

The hyper-parameters of GAME are shown in Table 3. The Hyper-parameters for adversarial training
used in DECOG are included in Table 4. We then show the the adversarial training (AT) procedure
of GAME as follows:

Step ① Initialization: The warm-up step. The training graph is utilized to train GAME model for a
few iterations.

Step ② PGD attack: The PGD attack is employed to inject the malicious nodes and edges that assault
the training nodes by message passing and create an attacked graph.

Step ③ Update gradients: The model parameters are updated based on the gradients that are calcu-
lated by training on the attacked graph and minimizing the node classification loss.

Step ④ Repetition: This adversarial training procedure is repeated until the training loss converges.
Finally, we can obtain a GAME model with better learning capability and outstanding robustness.
According to Table 2, we intriguingly discover that GAME with PGD can also defend against other
types of attacks, demonstrating the superior generality and applicability of GAME.

Notably, we discover that the GAME layer’s favorable attribute, i.e., sparsely activating partial ex-
perts, can be employed to design DECOG training strategy, which augments more diverse graphs.
Specifically, in the Step ② and Step ③, we activate different portions of experts in GAME model, de-
spite the fact that both steps are performed in the same epoch. The code is provided this anonymous
link 1.

In addition, the suggested GAME is scalable to graphs of varying sizes. We use mini-batch training
via neighborhood sampling with batchsize 1k to train GAME on grb-reddit and grb-aminer datasets.
In the future, we will transfer the framework of GAME to other GNN models.

1https://www.dropbox.com/scl/fo/4h0nzq60w5ibpptyubukr/h?dl=0&rlkey=
t6rc92eet7x7glqi6i0j8hao4
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Table 3: Hyper-parameters of GAME for grb-cora, grb-citeseer, grb-flickr, grb-reddit and grb-
aminer datasets. The n and k represent the number of total experts and activated experts in each
layer, respectively. Note that during generating adversarial samples, we activate all experts. Noisy
rate controls the randomness when the gate module activates the partial experts during minimizing
the loss.

Model Datasets n k Hidden sizes LR Dropout Optimizer Noisy rate

grb-cora 2 1 64, 64, 64 0.01 0.5 Adam 1e-2
grb-citeseer 2 1 64, 64, 64 0.01 0.5 Adam 1e-1

GAME grb-flickr 3 1 128, 128, 128 0.01 0.5 Adam 1e-1
grb-reddit 3 1 128, 128, 128 0.01 0.5 Adam 1e-2
grb-aminer 3 2 64, 64, 64 0.01 0.5 Adam 1e-1

Table 4: Hyper-parameters of adversarial training in DECOG for grb-cora, grb-citeseer, grb-flickr,
grb-reddit and grb-aminer datasets. Noisy rate controls the randomness when the gate module
maximizes the loss and activates the partial experts. Nodes represents the number of injected nodes,
and Edges indicates the number of added edges.

Model Datasets Attack Step size Iter. Nodes Edges Feature range Noisy rate

grb-cora PGD 0.01 10 20 20 [-0.94, 0.94] 1e-1
grb-citeseer PGD 0.01 10 30 20 [-0.96, 0.89] 1e-1

GAME grb-flickr PGD 0.01 10 200 100 [-0.47, 0.99] 2e-1
grb-reddit PGD 0.01 10 500 200 [-0.98, 0.99] 1e-1
grb-aminer PGD 0.01 10 500 100 [-0.93, 0.93] 2e-1

C STATISTICS OF GRAPH ROBUST BENCHMARK DATASETS

Table 5: Statistics of five GRB datasets covering from small- to large-scale graphs.

Dataset Scale #Nodes #Edges #Feat. #Classes Feat. Range
(original)

Feat. Range
(normalized)

grb-cora Small 2,680 5,148 302 7 [-2.30, 2.40] [-0.94, 0.94]
grb-citeseer Small 3,191 4,172 768 6 [-4.55, 1.67] [-0.96, 0.89]
grb-flickr Medium 89,250 449,878 500 7 [-0.90, 269.96] [-0.47, 1.00]
grb-reddit Large 232,965 11,606,919 602 41 [-28.19, 120.96] [-0.98, 0.99]
grb-aminer Large 659,574 2,878,577 100 18 [-1.74, 1.62] [-0.93, 0.93]

We evaluate our proposed GAME as well as adversarial learning framework on five real-world GRB
datasets (Zheng et al., 2021), spanning from small- to large-scales. The data statistics are displayed
in Table 5. To utilize grb-cora, grb-citeseer, grb-flickr, grb-reddit, grb-aminer, we apply the tool
provided by Graph Robustness Benchmark 2.

D GRADIV’S EFFECTIVENESS ON DIVERSITY OF NODE REPRESENTATIONS

To discuss GRADIV’s impact on nodes’ representation diversity, on grb-cora dataset, we visualize
the node representations generated by GAME without GRADIV and GAME, shown in Figure 8. We
observe that the node representations generated by GAME without GRADIV are more entangled and
intertwined with each other then GAME. This phenomenon demonstrates that GRADIV is able to
learn more distinguishable node representations.

E ADVERSARIAL GRAPHS GENERATED BY GAME ON GRB-FLICKR

We observe that the adversarial graphs generated from GCN are similarly distributed to the clean
graph in Figure 9 (i.e.,the red and black dots in the lower left corner of the GCN figure overlap signif-
icantly, but in the GAME figure the overlap is minor). On the contrary, GAME generates adversarial

2https://github.com/thudm/grb
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(b) Ours(a) Ours w.o. GraDiv
Figure 8: t-SNE for node features in grb-cora.

Figure 9: Distributions for clean and adversarial graphs created by GAME (b) and an adversarially
trained GCN (a). For fair comparisons, we explore the same setting for both models on grb-flickr.
graphs whose distribution is statistically distinct from that of the clean graphs, further demonstrating
the effectiveness of DECOG and GRADIV. Diverse experts enable GAME to learn distinguishable
node representations for robust performance, which significantly mitigates the GNN’s training diffi-
culties on the graphs with distinct distributions.

F THE ZOOMED VERSION OF FIGURE 5

Figure 10 is a zoomed version of Figure 5 for better clarity. Because the features of the GCN-
generated adversarial graphs almost overlap with the normal graphs (e.g., the red and black dots in
the lower left corner of the GCN figure overlap significantly, but in the GAME figure the overlap is
minor), their distributions are too similar and not as diverse as those generated by GAME. Because
the adversarial samples created by our GAME have more different adversarial distributions than
GCN, our GAME have better graph adversarial training effects. In summary, Figure 5 demonstrates
that GCN’s adversarial graphs are of worse quality than GAME’s.

(b) Ours(a) GCN

Figure 10: Distributions for clean and adversarial graphs created by GAME (b) and an adversarially
trained GCN (a). For fair comparisons, we explore the same setting for both models.
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